logo
我爱数学的手抄报内容资料:数学小故事
时间:2018年12月17日点击: 加入收藏 】【 字体:

数学魔术家

   1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。

   工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。

   这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。


八岁的高斯发现了数学定理


   德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。

   长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。

   他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。

   这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。

   “你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。

教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。

   还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”

   老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。

   可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”

   数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?

  高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。


希腊数学家的故事:


泰勒斯生于公元前624年,是古希腊第一位闻名世界的大数学家.他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,泰勒斯便专心从事科学研究和旅行.他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题.他的家乡离埃及不太远,所以他常去埃及旅行.在那里,泰勒斯认识了古埃及人在几千年间积累的丰富数学知识.他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已.

  泰勒斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等.也有人说,泰勒斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的.如果是这样的话,就要用到三角形对应边成比例这个数学定理.泰勒斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案.

  泰勒斯最先证明了如下的定理:

  1.圆被任一直径二等分.

  2.等腰三角形的两底角相等.

  3.两条直线相交,对顶角相等.

  4.半圆的内接三角形,一定是直角三角形.

  5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等.

  这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理.相传泰勒斯证明这个定理后非常高兴,宰了一头公牛供奉神灵.后来,他还用这个定理算出了海上的船与陆地的距离.


会数学的白老鼠

“哇!肚子真饿!有没有东西吃啊?”白老鼠彼特喃喃自语道。

突然间阵饭香飘来,彼特不由自主地跟随着香味来到一家饭店,看到店门口挂着一条横幅,上面写着“免费吃喝”四个大字。彼特二话不说,走进店里。

“好香的牛排啊!”彼特说完这句话就要张口吃起来。

“嘿!等等,先生。请您先回答我们的问题。”服务员叫道。

“你们不是写了‘免费吃喝’吗?”

“先生,请您看看右边。”彼特一看,条幅右边还贴着一张说明,上面写着要正确回答店家提出的问题以后才能免费吃喝。彼特无奈地说:“好,你出题吧!”

“好,请听题:我们饭馆今天总共洗了51个碗,每1个人用1个饭碗,每4个人用1个菜碗,每6个人用1个汤碗,请问今天有多少人来我们饭馆吃饭呢?”

彼特心想:被4和6整除的数必须是12的倍数,如果是12个人的话总共用碗12+3+2=17个,不对;如果是24个人的话那就用碗24+6+4=34个,也不对:算算如果36个人的话,总共用碗36+9+6=51个。找到答案啦!

“有36人来饭馆吃饭!”彼特高兴滴说道。

“先生,恭喜您,您可以用餐了。”服务员说道。于是彼特大吃了一顿。

数学世界是多姿多彩的,只要你用心去学,就一定会有所收获。


数学家欧拉小学时提问“星星”遭开除

欧拉是数学史上着名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。

事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:“天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。”

欧拉感到很奇怪:“天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?”

他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。

在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝“保持一致”,老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。

回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。

爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。

小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。

父亲听了直摇头,心想:“世界上哪有这样便宜的事情?”但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。

小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:“那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。”小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:“现在,篱笆也够了,面积也够了。”

父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。

父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。


蒲丰试验


一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。

   蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。


数学的小故事:关于“0”的故事


大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。


过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。 但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。


有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。 0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?” 0的兄弟姐妹们一口齐声的说:“好啊。” 8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?”老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?” 在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗?


数学神童希帕蒂亚的故事


希帕蒂亚 (公元约370~约415) , 西罗马帝国时期着名的女数学家、天文学家和哲学家。她全力协助父亲注释了欧几里德的《几何原本》。后来《几何原本》成为世界各国中学几何学的教材, 先后出了1000 多种以上的版本。希帕蒂亚由於为欧氏几何的普及做出了卓越的贡献, 在数学发展史上成为第一位最杰出的女数学家而永载史册。


希帕蒂亚生在古埃及的亚历山大城, 她的父亲是托勒密王朝开始设立的文化研究院的院长, 是大数学家和知识渊博的学者。他对女儿天资聪颖又爱动脑子非常喜欢, 想方设法帮助她一步一步踏入知识的王国, 希望她长大以后也能成为一位受人尊敬的学者。


10 岁的希帕蒂亚已经显露出超人的才华。她用心攻读数学, 对欧几里德的《几何原本》已经有了初步的了解, 尤其对各种各样的数学应用题最感兴趣。有天清晨, 父女俩照例进行体育锻炼, 在林间草地上呼吸清新的空气。


这时一轮红日刚刚从地平线上升起。小希帕蒂亚全身早已热汗淋漓了, 可她还是不肯停止运动。


父亲说: “别练了孩子, 你该休息休息了。”


女儿说: “好。咱们在草坪上散步吧。”


太阳光照射在緑茵上, 花草树叶上的露珠开始消散了, 湿润空气中隐含一种淡淡的馨香。父女俩兴致勃勃地交谈着。


父亲说: “你看, 草地上咱们的影子是什么?”


女儿说: “一长一短, 一大一小, 一胖一瘦。我看爸爸的影子像一只大黑熊, 我的影子像一只小猴子。”


两个人都乐得哈哈笑个不止。


父亲说: “小东西, 也亏你想象得出来。”


女儿说: “本来就像么。再说它总是影子么。”


父亲说: “好吧。我问你, 这地上的影子又是怎样形成的呢?”


女儿说: “那还不简单?物体把太阳光挡住了, 不就成了影子?”


父亲说: “说得对。过几天我带你去参观有名的古埃及法老齐阿普斯的金字塔。到时候咱们要测量一下金字塔的高度。我要你先想一个最方便的测量方法。行吗?”


女儿高兴得跳起来, 说: “太好了。我一定要想出测量的最好办法, 又简单又方便。”


父亲上班去了。小希帕蒂亚把自己关在书房里学功课。花园里鸟儿的鸣叫再也惊动不了她, 要是在平时, 她早就跑出去玩了。但是父亲要她先想好测量金字塔的方法, 而她到现在还没想好, 说什么也不能出去玩。她知道父亲的脾气, 要是完不成预先指定的任务, 游金字塔就会落空。


希帕蒂亚在桌子上画了许多张金字塔的图形, 聚精会神地思考着计算塔高的方法。父亲告诉过她: 金字塔的底部是一个正方形, 那么底部的边长就是能够用尺子测量出来的了。根据勾股弦定理, 很容易算出金字塔底面 (正方形) 对角线的长度, 如果再根据勾股弦定理演算, 只要知道金字塔一条棱的长度, 便很容易算出金字塔的高度了。


(作者:佚名)

更多主题、节日手抄报作业模版、

素材(边框、文字、插画、图片)

可以关注我们的公众号:

36色简笔画


最新文章
推荐文章
热门文章